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‘Memory’ refers to any of the panoply of changes in the activity or 
connectivity of neural systems that are triggered by stimuli or brain 
states and then persist over a duration longer than the triggering 
events. Memory is adaptive: an agent with memory can learn from 
experience1–3, generalize faster4,5, recall prior information to better 
infer or predict with incomplete data6,7, and perform other computa-
tions that depend on accumulating information over time, including 
integration8–10, search11 and decision making12. Many of these func-
tions require elements beyond memory, but memory—defined and 
discussed narrowly in this Review as the persistence of states over 
time—is an essential component. Here we provide a glimpse, from the 
computational and theoretical perspective, of some of the principles, 
mechanisms and biological substrates that are believed to form the 
building blocks of neural memory. We focus on the question of memory  
maintenance, while also discussing questions that perplex us.

It is traditional to partition memory into short-term and long-term 
varieties, with varying definitions for the boundary13. One distinc-
tion is based on persistence time, with short-term memory (STM) 
being defined as lasting for seconds to tens of seconds and long-term 
memory (LTM) being defined as lasting for hours to decades. Another 
is that STM refers to sustained changes in activity while LTM refers 
to changes in the presence of connections and the strengths of the 
corresponding synapses14–16 between neurons. From a dynamical 
perspective, it is unclear how sharp the boundary between STM and 
LTM is, and some of the central computational challenges associated 
with maintaining states over time are similar, whether ‘time’ refers to 
seconds or decades and whether ‘state’ refers to activity or structure.

What features might be desirable in any memory storage system? 
First, by definition, the system should possess states that can persist 
over time. Second, it should contain a sufficient ‘capacity’ or number 
of states, with the capacity scaling up in an appropriate (efficient) way 
with resources consumed. This capacity constraint might be very dif-
ferent for STM and LTM. Third, different inputs to be remembered 
should trigger the persistence of different memory states. Fourth, the 
states should be robust to noise, and concurrently stored memories 

should not seriously interfere. Finally, the stored memories should be 
correctly retrievable, given appropriate cues.

State variables in the brain are too numerous to list; examples 
include neural voltage, synaptic activation, synaptic strengths, synaptic  
connections, states of presynaptic vesicles, phosphorylation levels, 
mRNA concentrations, transcriptional regulation, neuromodulatory 
signals, and the entire complement of states in glia and other constitu-
ent cells. In principle, any or all of these may be pressed into service 
as memory states; many have indeed been shown to be, and we will 
discuss how some of these may be made to persist over time.

Why is setting up memory states a hard problem? Biophysical quan-
tities have intrinsic timescales over which they decay to some baseline 
level if not reactivated. Membrane time constants are milliseconds to 
tens of milliseconds17, postsynaptic potentials last for tens to hundreds  
of milliseconds18 and certain facilitation processes can last for several 
hundred milliseconds19. However, behavioral timescales for STM are 
on the order of tens of seconds to minutes. With respect to structural 
and other forms of LTM, molecules turnover with typical protein 
lifetimes on the order of days20, whereas memories can persist for 
years. Thus, in both LTM and STM, the brain must construct states 
that persist using, as we understand so far, comparatively memory-less 
substrates (Figs. 1–3).

Next, noise is ubiquitous in the brain. Synapses transmit signals 
with some probability of failure21. Neurons receive fluctuating inputs 
and spike stochastically22,23. Copy numbers of important proteins 
and ionic species can be small in individual spines and boutons24, 
permitting large fluctuations. Even with persistent states, noise can 
drive the system into a non-persistent regime or into the wrong  
persistent states (Fig. 4).

Finally, the desirables of memory are in opposition; trying to simul-
taneously satisfy them involves tradeoffs. For robust recovery, distinct 
memory states should be well-separated so that states with noise can 
be mapped to the correct memory. But robustness imposes a capacity 
constraint: fewer well-separated states will fit in a fixed representa-
tional space (Fig. 5). Alternatively, memory may be made both robust 
and high-capacity using advanced error-correction as in communi-
cations theory25–27, but this requires complex encoding and decod-
ing26 (Fig. 6b) that might be neurally implausible. Slow biophysical  
processes can generate long persistence times with less circuit fine-
tuning, but they render the system relatively unresponsive to inputs28. 
Plasticity that is strong enough for rapid learning of new information 
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causes rapid overwriting of existing memories29–31. To learn where the 
brain is situated on these tradeoffs is to better understand the impera-
tives of neural memory. Here we discuss mechanisms for the genera-
tion of persistent states, their robustness and capacity, the biological 
evidence for these mechanisms, and the major differences in neural 
and von Neumann computer architectures for memory.

Creating persistence from memory-less components
Most models of STM rely on some form of persistent activity. 
Experimentally, persistent activity has been observed in various 
cortical areas during the delay periods of a range of memory tasks 
and it correlates with task load and memory performance in a way 
that allows the remembered item to be decoded32–34. The substrate 
of LTM is persistent or lasting synaptic change35, according to the 
central dogma of neuroscience, which dates back to Ramón y Cajal36 
and others37,38. Indeed in experiments, LTM is associated with stable 
changes in synaptic weights and structure, and memory acquisition is 
impaired by blocking long-term plasticity (LTP)39,40.

How is it possible to create long-lasting states for neural memory? 
To persist beyond the time constants of the constituent elements, 
states must be stabilized by circuit interactions. As we discuss next, 
circuit mechanisms can involve across-neuron signaling (STM) or 
molecular interactions in a synapse (LTM), and can produce diverse 
persistent responses, including fixed states, slowly decaying states 
and dynamic trajectories.

Positive feedback. Positive feedback is a general principle for generat-
ing persistent states from inherently non-persistent variables (Fig. 1). 
Units in a circuit that excite one another allow excitation to persist 
beyond the duration of the exciting stimulus, as in the ‘reverberating 
activity loops’ proposed by Lorente de Nó and Hebb38,41.

Discrete memory states. Non-persistent, nonlinear units that 
strongly excite themselves or each other can, once activated, main-
tain a high-activity or ‘up’ state (Figs. 1 and 2d), whereas the ‘down’ 
state remains stable if initial activity is low; input pulses can drive 
transitions between these stable states.

In engineering, this is how flip-flops or switches are constructed from 
leaky capacitive elements42 and is the basis for static random-access 
memory (static RAM)43,44. Autocatalytic molecular reactions are a form 
of positive feedback that have been proposed to support bistable switch 
dynamics45,46, as are strong synaptic interactions between neurons47.

More generally, strong feedback through excitatory connections 
can support multiple discrete stable states (called ‘attractors’), each 
a different distributed pattern of activation across the neurons  
(Fig. 2c), as shown by Hopfield and others48,49. Surprisingly, and 
despite the pervasive influence of the discrete attractor Hopfield net-
work in how we think about memory in neural systems, it is hard to 
identify uncontroversial examples of discrete attractors in the brain 
that persist in the absence of stimuli.

A continuum of memory states. Positive feedback, when care-
fully adjusted, can alternatively produce a continuum of stable 
states9,10,50,51. If the excitatory drive from positive feedback balances 
the intrinsic decay of the state, and if this balance can be achieved 
for a range of states, the system can maintain a continuum of states  
(Figs. 1f,h and 2e) and use them to store an analog variable8–10,51.

In general, these ‘continuous attractors’ emerge only when circuit 
interactions have some symmetry or other fine-tuning. Consider 
a ring of neurons, each with the same strong excitatory drive  
to immediate neighbors and inhibition to the rest (Fig. 2e)10,50.  
The stable state on the ring is an activity bump and all of its transla-
tions (rotations), defining a one-dimensional continuous attractor. 
Neural plasticity could form and calibrate such structured inter-
actions52,53, and intrinsic bistability could help to stabilize such 
networks54,55, but usually some fine-tuning requirements remain. 
How the brain might solve this problem is an open theoretical and 
experimental question.

Experimental evidence suggests that the brain may use continuous 
attractors in multiple brain systems, both cortical and subcortical, 
including the oculomotor, head direction, grid cell and prefrontal 
working memory circuits8,9,56–60.

Persistent states from inhibitory interactions. Positive feedback can 
arise from mutual inhibition rather than excitation: units that inhibit 
one another effectively disinhibit themselves. Thus, combining an 
excitatory feedforward drive with mutual inhibition can produce 
switching dynamics61 (Fig. 2d). Similarly, circuits with all-inhibitory 
recurrent interactions can form continuous attractors51,62,63.
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Figure 1 Stable states from positive feedback. (a) A system with sigmoid-
shaped positive feedback (black) can exhibit bistability: when positive 
feedback exceeds intrinsic decay (gray), total activation is pushed 
up(right)ward (‘+’ or green areas and arrows), and vice versa when decay 
dominates (‘−’ or red areas and arrows). White circles mark stable states 
or attractors. (b) An exponentially decaying unit (decay proportional to 
activation) with self-excitation (strength W  ) and a saturating response 
can produce the dynamics shown in a. (c) Bistability with an alternative 
nonlinearity. For weak input, the response is small. Above a threshold, 
activity increases linearly and then saturates. In general, nonlinear feedback 
with initial acceleration followed by saturation can produce bistability.  
(d) Presented as in b with the unit replaced by a homogeneous population. 
Shaded cube, the state space or activation space of all units. r1 represents 
activation level of unit 1, etc. The vector of activation of all units is a point  
in state space. The high and low activity states are shown as white circles. 
(e,f) Feedback tuned to cancel decay across a range of activations, 
producing a continuum (a line attractor) of stable states, shown in f.  
(g,h) Variant of e in which the continuum of states forms a ring (shown in h).  
Here, neurons physically arranged on a ring excite immediate neighbors 
(top, green) and inhibit all other neurons (orange). Synapses are shown from 
one neuron. The stable activity profile is a bump and all shifts of the bump 
around the ring (bottom, three stable states plotted over each other).
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LTM maintenance. How is a long-term memory, once acquired, 
maintained over months and years, given that protein lifetimes are 
typically on the order of days? A widely hypothesized possibility is 
that LTM stability arises from synaptic stability (see below for alterna-
tives). Positive feedback is often discussed for STM, but the concepts 
are general and relevant to LTM. Autocatalytic reactions or mutually 
exciting or inhibiting molecular interactions can stabilize intrinsically 
non-persistent molecular states45,64,65, allowing them to serve as the 
synaptic maintenance signal (Fig. 3).

If synaptic strength were specified solely by the state of a single  
bistable molecular switch, a synapse could have only two sizes, unless 
different copies of the molecules are compartmentalized and inde-
pendently switchable or if there exist multiple switches involving  
different molecular species with staggered switch thresholds. In 
the latter two cases, the synapse could have multiple discrete levels. 
Experimentally, leading candidates for maintaining synaptic state 
through positive feedback include calcium/calmodulin-dependent 
protein kinase II (CaMKII) and protein kinase Mζ (PKMζ).

CaMKII autophosphorylation acts as positive feedback, potentially 
allowing it to serve as a bistable switch66. Inhibiting the interaction of 
CaMKII with the NMDA receptor after LTP induction disrupts poten-
tiation in a manner that persists after the inhibitor is removed67,68, 
and disrupting CaMKII-NMDAR complexes has long-term effects on 
spatial learning69. Moreover, CaMKII may form a bistable switch with 
the translation factor CPEB70. However, not all CaMKII inhibitors, in 
the procedures tested, affect LTP maintenance71.

The constitutively active protein kinase PKMζ inhibits a protein 
that suppresses its translation (positive feedback through mutual inhi-
bition)72–74. The PKMζ inhibitor ZIP disrupts both LTP and memory 
maintenance75, and models suggest that PKMζ can maintain its state 
once it is highly expressed76,77. However, ZIP is not specific to PKMζ, 
and intact LTP maintenance and memory in PKMζ knockout mice 
complicate PKMζ’s role in memory maintenance78,79, although the 
latter results might not apply to wild-type mice80,81.

Clearly, the case remains open for both of these candidate  
mechanisms.

As in STM, feedback could generate a molecular maintenance sig-
nal of analog strength. If a synapse produces a number of molecules 
of a certain type in proportion to its current size (synapse size is 
proportional to strength; Fig. 3b)82,83, and if these molecules capture 

resources for synaptic maintenance, the process can correspond to 
tuned positive feedback. As discussed below, creating analog persist-
ent states with positive feedback involves fine-tuning. Even if well-
tuned, and more so if not, the states can drift over time—problematic 
over the long timescales of LTM—suggesting that maintenance is 
more likely to be based on discrete attractors. Synapse strengths may 
therefore be discretized. Electron microscopy results showing that dif-
ferent synapses between the same axon and dendrite have essentially 
the same volume seem to be consistent with a discrete set of sizes84, 
but much more needs to be done to settle this question.

Negative derivative feedback. A system with strong excitatory cou-
pling, similarly strong inhibitory feedback and slower excitatory than 
inhibitory interactions can also generate memory states85,86. The 
general principle is negative feedback control87,88, commonly used 
by biological systems89,90. Fast-acting inhibitory couplings counter-
act changes of state, allowing the network to maintain the states it 
is placed into. Similar to positive feedback networks, a (neural or 
molecular) network with negative derivative feedback can exhibit 
stable states or very long transients, is responsive to inputs despite its 
long persistence times, and is in some ways more robust (see below). 
Experimentally, it is unclear whether observed continuous attrac-
tors are based on positive feedback, negative derivative feedback or 
a combination of both.

Long transients, feedforward structures and chaotic states. The 
above mechanisms, when well-tuned and in the absence of noise or 
other inputs, in principle allow memory to persist for infinite time. 
There are also more transient memory mechanisms.

Sufficiently strong positive feedback with particular architectures 
creates attractors, but more generally positive feedback creates ‘slow 
modes’, which exhibit activity decay at timescales slower than the 
biophysical time constants of the individual elements (Fig. 2b). These 
slowly decaying traces can be used to store inputs and decode them 
from the instantaneous output of the system91–93.

Another way to prolong decay is through delay lines, which were 
used to construct memory in the earliest days of computing43,94. In 
the brain, a delay line can consist of neurons coupled in a feedforward 
architecture, each feeding activity into the next95–98, or a cascade 
of subcellular molecular reactions24,40. The signal decays rapidly at 
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a b c d e fFigure 2 Circuit mechanisms for persistent 
states. Top row, schematics of various 
architectures (green, excitatory interaction; 
orange, inhibitory; line weight proportional to 
strength). Shaded cubes show state space of 
network population activity. (a) Non-interacting 
units. Any state decays to the sole fixed point at  
0 with the short intrinsic time constant of each 
unit. Traces at bottom show activity of three  
units over time in response to a transient input 
(input duration shown by thin red bar below).  
(b) Moderate-strength positive- or negative-
derivative feedback can produce long transients. 
(c) Strong structured recurrent feedback (as in a 
Hopfield network) can generate multiple discrete 
attractors (stable states; white circles). Each corresponds to one pattern of population activity (row) at bottom, with the all-black pattern representing 0.  
(d) Bistable switches can be implemented by two mutually exciting pools or by mutually inhibiting ones (combined with a uniform excitatory drive), and can 
be viewed as a special case of a Hopfield network. Fixed points of the mutual-excitation switch are on the main diagonal; mutual-inhibition fixed points are 
on the cross-diagonal. Bottom, activity of two units from different pools of the mutual inhibition network (gray, black at bottom) and inputs to these pools 
(short gray, black pulses, top). (e) Highly structured networks with symmetries or fine tuning in weights can generate continuous attractors via positive 
feedback or negative derivative feedback. (f) Complex trajectories and responses can be generated in networks with feedforward and non-normal architectures 
such as synaptic chains (depicted here). Traces at bottom show population activity at different points in time.
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each node, but is passed along the chain (Fig. 2f), extending signal 
lifetime in proportion to the number of nodes. Delay lines are a special 
case of ‘non-normal’ networks97,98, which include negative derivative 
feedback networks85 and other so-called ‘balanced’ networks99–101. 
General balanced networks tend to generate fast transient responses, 
possibly in opposition to the desiderata for memory networks.

When strongly coupled, large non-normal and normal networks 
can generate complex sustained dynamical responses, including oscil-
lations and chaos100,102,103. Whether these rich dynamics can reliably 
serve as STM remains an interesting theoretical question.

Experimentally, long stimulus-dependent trajectories are observed 
in multiple neural systems104,105, but it is unclear whether these tra-
jectories actually subserve memory or simply move the system from 
one state to another for other purposes.

Stable or slow biophysical processes. Let us briefly return to the 
assumption that memory is created out of relatively memory- 
less components. What are the computational implications of  
constructing STM and LTM out of fundamentally persistent or  
slowly decaying elements?

Slow synaptic dynamics for STM maintenance. Many biophysical 
timescales in the brain are short compared with persistence times 
for STM, but longer time constants at the cellular and synaptic levels, 
including synaptic facilitation (τ of tens to hundreds of milliseconds), 
post-tetanic potentiation (τ of one to tens of seconds) and calcium-
sensitive cation currents (tens of seconds to minutes) might help to 
stabilize persistent neural activity states19,106–108.

However, a drawback of STM models based on slow biophysical 
timescales τ is that, unlike those based on positive feedback with faster 
elements, they are slow to respond to input changes. A unit-strength 
input applied for duration ∆t produces a change in the persistent state 
proportional to ∆t/τ; to elicit a unit change in state, the input would 
have to persist for the long duration τ. By contrast, positive feedback–
stabilized states built with fast elements permit relatively fast changes 
of state, even if the effective network time constant for memory is very 
long or divergent. On the other hand, the stability of the oculomotor 
integrator to perturbation109 and the sensitivity of positive feedback–
stabilized circuits of fast elements raises the possibility that slower bio-
physical time-scales may be important in STM maintenance108,110.

Intrinsic biochemical multistability for LTM maintenance. LTM 
maintenance at synapses could also involve slow states, in the form of 
intrinsic molecular multi-stability. A molecule with two low-energy 

states can, if the energy barrier between the states is high enough, 
persist in either state over very long timescales; these states can serve 
as markers of a potentiated synapse. However, this molecule would 
either have to avoid turnover and retain its state for the memory life-
time (indeed there are long-lived proteins with lifetimes of a decade 
or more, but these might contribute to other problems, such as aging 
from disrepair111) or be able to transmit its state to new copies.

Consistent with the latter possibility, the prion-like cytoplasmic 
polyadenylation element–binding protein (CPEB) has been proposed 
to be the synaptic maintenance signal40,112. CPEB, which is activated by 
NMDA signaling and regulates protein translation in dendrites, exists 
in two stable folded conformations, one of which forms self-perpetuat-
ing multimers112,113. Experimentally, knocking down CPEB after mem-
ory consolidation disrupts previously stable hippocampal memory114 
and LTP, and CPEB mutations disrupt cerebellar learning115.

Robustness to noise
Given the apparent ubiquity of noise in the brain22,23, the plausibility 
of hypothesized memory mechanisms depends on their robustness. 
Here we consider the effects of noise in the state variables themselves 
(for example, neural activity and protein concentration) and in the 
parameters of the underlying system (for example, synaptic weights 
and reaction rates).

Discrete attractors are robust. For ongoing uncorrelated noise, bist-
able switches built from strong positive feedback have a probability 
of spontaneous switching that is exponentially small in the number 
of participating units116,117. Thus, the states powerfully resist noise 
and can recover the attractor from a perturbed network state. Strong 
positive feedback generally drives responses into the saturated regime 
of activation; thus, bistable switches are also robust against perturba-
tions in the coupling strength. For sufficiently strong coupling, small 
changes in strength will not destroy or even substantially alter bist-
able states118. Similarly, other discrete attractor states (such as those 
in Hopfield networks) are robust to noise that is smaller than half the 
distance between any pair of attractor states (Fig. 4a): this noise can-
not move the system to another attractor, and the dynamics regains 
the original attractor.

Continuous attractors are partially robust. Continuous attractors 
are a mathematical idealization: slight perturbations in network 
structure break the continuum into a string of stable points (Fig. 4b), 
much as a narrow stream of water is prone to necking off into closely 
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Figure 3 Long-term maintenance of synapse size. In both panels, green 
hexagons represent molecules synthesized at the synapse, whose role is 
to capture centrally trafficked resources (purple triangles) for synapse 
maintenance. (a) Synapse strength is specified by the state of a bistable 
molecular switch (orange); the state of the switch determines how many 
capturing molecules (green) are produced, and thus the synapse size.  
(b) Here, the synapse manufactures capturing molecules (green) in direct 
proportion to its size. These molecules capture synapse maintenance 
resources in proportion to their number; thus, the synapse can obtain 
resources in proportion to its size, for any given size. In both a and b, the 
soma can simply sum feedforward signals from the synapses to determine 
how many resource molecules to transcribe. Note that the persistent 
specification of synapse size, or the maintenance signal, must be localized 
in the synapse, as somatic changes alone cannot plausibly account for 
synaptic specificity. To be directly involved in generating a synapse-specific 
persistent maintenance signal, the soma would require at least 2K persistent 
states (assuming the K synapses can independently take on one of two 
strengths), a biologically implausible scenario.
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spaced droplets. However, narrowly spaced fixed points approximate 
a continuum, and henceforth we refer to both ‘truly’ continuous  
and quasi-continuous attractors formed from fixed points as continu-
ous attractors.

Continuous attractors are not fully robust to ongoing noise:  
perturbations off the attractor manifold quickly decay away and are 
therefore corrected (Fig. 4b). However, components of noise along 
the manifold push the state to another stable point on the manifold 
(Fig. 4b). With ongoing noise, the state diffuses along the attrac-
tor119,120, moving away from the initial state with squared distance 
growing linearly in time at a rate proportional to the attractor dimen-
sion and inversely proportional to the number of units in the net-
work120,121. Approximately continuous attractors with some degree 
of discreteness along the attractor can resist diffusion resulting from 
low-amplitude noise54,55, albeit at the cost of a rounding-off or dis-
cretization error in the represented variable122. However, they do not 
allow for integration of small, smoothly varying inputs (whose task is 
to systematically push the state along the attractor) and at the same 
time are not as robust as well-separated discrete attractors (such as 
those in Hopfield networks).

Robustness of negative derivative feedback networks. Negative 
derivative feedback networks are more resistant to small perturba-
tions in interaction strength than positive feedback networks. Starting 
with a network tuned to have 100-fold longer persistence than the 
biophysical time constant τ, a 5% reduction in excitatory feedback 
will cause a fivefold drop in the persistence time of positive feedback 
networks, but only a 5% change for negative derivative feedback. 
This happens because τ is divided by a number close to zero in well-
tuned positive feedback networks; a small change in feedback shifts 
the denominator away from zero, quickly collapsing the persistence 
time to ~τ. Negative derivative feedback networks, loosely speaking, 
multiply τ by a large number; small changes in excitatory strength 
result in similarly small percentage changes in this multiplier and 
thus the time constant.

Noise tolerance in networks with long transients. In positive feed-
back networks that encode information with long, decaying tran-
sients, network responses converge toward zero over time (Fig. 4c); 
thus, for temporally punctate inputs and ongoing noise, initial states 

can begin well-separated, but become more easily confused through 
noise over time (although noise orthogonal to the slow directions 
decays away rapidly). Thus, noise contributes to information loss 
in addition to loss from intrinsic activity decay. In networks with 
feedforward or hidden feedforward structure, such as synaptic 
chains, the amount of (Fisher) information grows in proportion 
to network size and decreases with time, at best as the inverse of 
elapsed time121.

Networks that generate complex trajectories99,100 can exhibit attrac-
tive dynamics that correct small perturbations (Fig. 4d). However, 
in these statistically homogeneous random networks, the attracting 
region is small and shrinks with network size123.

Memory capacity
Given a computational model of memory storage, how much informa-
tion can be stored as a function of network size? This is the question 
of memory capacity. In real neural systems, what are the demands on 
STM and LTM capacity?

As we discuss below, a number of factors limit memory capacity. 
One is decay, if the memory states are not truly persistent over time. 
Another is noise, which can cause the stored memory state to jump 
to another (Fig. 4), and increasing noise tolerance via well-separated 
memory states reduces capacity (Fig. 5). The third is interference: 
even if existing memory states can stably persist over time and the 
stored states are robust to noise, if the number of inputs written into 
memory over the organism’s lifetime exceeds the space available 
for memory, accommodating new memories requires overwriting 
old ones.

How much LTM is enough? Meaningful events and scenes in the 
world may result from only special combinations of elements, but if 
the number of elements is large this can quickly lead to a combina-
torial explosion. LTM capacity, if it scales linearly with neurons or 
synapses, can be overwhelmed even if the number of neurons and 
synapses is very large. Theoretical estimates of the brain’s LTM capac-
ity vary wildly, from 109 to 1020 bits124. Empirically, human LTM for 
complex stimuli is large125,126.

Figure 4 Robustness of persistent activity architectures. (a) In discrete 
attractor networks, states in the neighborhoods (light blue) of attractors  
(dark blue dots) decay to their attractors and are thus automatically 
corrected. One may view this process as memory retrieval from partial cues. 
If the image of the brain (far right, bottom) is an attractor, then a noisy 
input (second image from right) leads the network to recover the intact 
image. If noise is sufficiently large (second image from left), the network 
fails to recover the intact image, and converges to another memory state 
(first image). (b) Top, a continuous attractor corrects noise perpendicular to 
the attractor manifold (red arrows), but not noise along the manifold (green 
arrows), because this noise puts the system into another permissible state, 
corresponding to a different value of the represented variable. Bottom, 
sensitivity to structural noise. With special architectural symmetries or fine 
tuning, the set of stable states is continuous (flat energy valley, upper panel), 
but small perturbations to network architecture break the continuum into 
a set of closely spaced and thus quasi-continuous set of fixed points (lower 
panel). (c) When coding with long transients in a non-persistent system, the 
initial separation between states decays over time (converging blue traces). 
Thus, the ability of a given noise strength to confuse two states grows with 
time. (d) Complex trajectories in balanced networks can be surrounded by a 
small region that pulls states back onto the trajectory. However these regions 
seem to be vanishingly small with system size119.
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Capacity in LTM models.  Hopfield networks. The Hopfield network127 
is a classic model of LTM storage and ‘auto-associative’ retrieval using 
relatively memory-less units. It can store the memory of a set of input 
patterns (a pattern is an arbitrary activity state of all the neurons) in 
its synaptic weights. For retrieval, the neural dynamics, using the 
learned weights and starting from partial or noisy inputs, flows to 
a stable activity state corresponding to the closest stored pattern (as 
in Fig. 4a). The network is called auto-associative because the tag to 
retrieve a state is the state itself, and it correctly retrieves memory 
from and denoises noisy cues.

General arguments show that a Hopfield network of N neurons 
can store ~N arbitrary stable patterns in its weights128,129. Specific 
learning rules, such as the associative Hopfield learning rule, in 
which a weight is strengthened whenever pre- and postsynaptic neu-
rons express correlated activation, achieve this scaling (albeit with a  
constant < 1 prefactor130).

However, learning new inputs once capacity has been reached 
abruptly destroys the stability of all existing states, which can no 
longer be retrieved. Notably, adding bounds to the range of each syn-
apse allows the network to function in a ‘palimpsest’ mode, where old 
memories gradually decay as new ones are learned; thus, catastrophic 
erasure from interference is avoided, but capacity (the number of 
readable memories at any given time) is lowered131.

Palimpsest LTM networks. The palimpsest mode induces a tradeoff 
between retaining memories and writing in new information with 
high fidelity, which quickly overwrites older synaptic strengths. 
Several studies consider the joint limit on the lifetime and fidelity of 
memories in the palimpsest mode. Recent results show that if each 
bounded synapse consists of a set of persisting internal states (rather 
than just one scalar strength), with structured state transitions, then 
information can persist for a duration that scales almost linearly with 
the number of synapses in the network while allowing new memories 
to be acquired at high fidelity31,132. These results are about informa-
tion contained directly in the synaptic weights; it is currently unclear 
how the bounds would change for plausible memory retrieval as in 
Hopfield networks.

High-capacity LTM systems. Information theory shows how to 
construct sets of states of length N (‘codes’) that robustly represent 
exponentially many states (~eρN, where 0 < ρ < 1)25,26. The theory of 
error-correcting codes does not, however, account for encoding and 
decoding (that is, denoising) costs. Usually, denoising good codes 
involves high complexity, with large costs either in space (many neu-
rons) or time (slow, many neural time constants). In a neural system, 
encoding, storage, and denoising must all be done by neurons and 
would consume the same types of resources. The question is whether 
the brain can encode, store and denoise close to exponentially many 
states using linearly many neurons.

Interestingly, Hopfield networks of disjoint cliques or bistable 
switches can have nearly exponentially many stable states that are 
denoised by network dynamics117,133. However, these specially struc-
tured states do not correspond to arbitrary input patterns. It may 
be possible to store arbitrary patterns by mapping them onto these 

structured states—in this view, the inputs are stored by ‘hashing’ them 
to the persistent states134—but this encoding may be computationally 
complex (Fig. 6b). It involves mapping exponentially many inputs that 
may not be well-separated to as many distinct well-separated memory 
states without a structure consistent with the represented inputs. It 
remains an open question whether the structure of natural inputs 
permits natural (low-complexity) mappings of this sort, to enable 
robust exponential or at least superlinear storage.

How much STM is enough? Behavioral evidence indicates that 
human STM capacity is fewer than ten items135. This is surprising, as 
general intelligence strongly correlates with STM performance136. It is 
unclear whether the stringent capacity limit is a result of constraints, 
such as limited resources, decay or interference, or whether it is a 
design feature. If the former, it remains unresolved which constraints 
are the limiting factors137,138. If the latter, STM might be optimized 
for easy encoding and retrieval, and clearing older inputs keeps the 
buffer clutter-free for fast access, although this objective might be 
better served by selective erasure of unnecessary items instead of 
nonspecific refreshing.

Capacity in STM models. The Hopfield network also functions as 
an STM for its learned patterns, as these patterns are stable states of 
the dynamics. The same is true for continuous attractor networks. In 
both cases, STM is encoded by activating a stable state and consists 
of the persistence of that state over time. In this setting, the capacity 
of the Hopfield network is again ~N, linear in the number of neurons 
in the network.

In continuous attractor networks, one cannot enumerate states to 
estimate capacity. Nevertheless, the range of the represented vari-
able divided by the decoded error some time T after encoding gives 
the capacity of such networks. Defined this way, the capacity scales 
linearly with N and inversely with T120,121. The scaling with network 
size is consistent with Hopfield networks, but the degradation with 
time is an additional penalty incurred by (even well-tuned) continu-
ous attractor networks.

Items in a sequence of input can be recovered from the instanta-
neous states of networks with long transients rather than fixed-point 
dynamics. The capacity of such networks, roughly defined as the 
summed memory of past inputs that can be recovered from the cur-
rent state, grows linearly with N in linear networks93,97 (and decays as 
1/T2, where T is elapsed time). Under the same metric, the best linear 
networks for sequence memory with ongoing neural noise are organ-
ized in a single, maximally long (N neuron long) chain97. Networks 

a

b

Figure 5 The tradeoff between capacity and robustness. (a) If memory 
states, whether discrete or continuous (dark blue in left, right, respectively), 
are well-separated, a decoder can robustly recover the state from a relatively 
large amount of noise because the neighborhoods of each memory state are 
large (shaded light blue regions). (b) Packing more memory states into the 
fixed state space volume of a given number of neurons necessarily means 
that the neighborhoods of each memory state will shrink. A small amount 
of noise drops the state into the neighborhood of a different memory state. 
Thus, higher capacity means less noise tolerance.
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with transient dynamics can alternatively store a single input (rather 
than a sequence). Here again, performance improves linearly with N 
(and at short times decays as 1/T)121.

Discrete versus continuous attractors for memory?
Why might the brain use (quasi)continuous memory states given the 
capacity and robustness advantages of well-separated discrete states? 
Mapping an analog variable onto a continuous manifold of matching 
dimension can preserve metric information, with nearby values of the 
variable mapped to neighboring neural states (Fig. 6). With a neural 
representation that preserves the metric of the external analog vari-
able (for example, using a (quasi)continuous set of memory states), it 
becomes possible for an input representing the time-derivative of the 
external variable to directly update the neural state to the new value 
of the external variable (Fig. 6a). Indeed, many systems modeled as 
continuous attractors are hypothesized or established ‘integrators’.

Model mechanisms: questions and tests
In view of the computational principles reviewed here, it is clear that 
much work is required to establish which mechanisms are actually 
used for STM and LTM in the brain.

Questions and tests for STM. Is persistent activity the basis of STM, 
and if so, what is the relative role of circuit versus slow subcellular 
mechanisms? Some subjects of ‘absence’ (petit mal) seizures can 
process questions and resume conversations after several seconds of 
abnormal synchronized brain activity139. This observation could, in 
principle, argue against STM mechanisms based on short biophysical 
time constants and circuit feedback–stabilized activity, but the data 
are not conclusive, as seizures are often localized and may not have 
disrupted activity in the relevant areas. Blocking activity for varying 
lengths of time (for instance, optogenetically) in relevant areas and 
then measuring the degree to which memory recovers could help to 
resolve this issue. Another possibility is to measure the gain in the 
persistent component of neural responses after receiving a transient 
input: systems relying on long biophysical timescales show small gains 
(see above).

Neurons believed to be involved in STM can exhibit evolving 
patterns of activation during the delay period140. These data may 
suggest that the circuit operates with transient dynamics or feedfor-
ward structures (Fig. 2b,f); alternatively, they could reflect a stable 
manifold, with the overall state freely flowing along the manifold, 
whereas a lower-dimensional projection of network activity remains 
fixed and supports the memory141. An experimental probe might use 
targeted perturbations (such as patterned photostimulation142) to find  
directions that disrupt memory maintenance.

In STM psychophysics, does degradation in recall performance 
result from temporal decay or interference137,138? The former implies 

a continuous attractor or a transient memory system in which infor-
mation is gradually lost over time. The latter implies a palimpsest-like 
memory in which memories are temporally stable without external 
drive, but are overwritten by new inputs. Varying delay periods while 
keeping memory load fixed and vice versa and quantitatively measur-
ing performance can help to resolve the underlying mechanisms.

Finally, despite the tremendous influence of discrete attractor mod-
els of neural memory127, the superior stability and noise tolerance of 
discrete attractors relative to continuous attractors, and the apparent 
prevalence of continuous attractors in the brain, there has been no 
clear identification of neurons involved in discrete attractor dynamics. 
Perceptual bistability seems to be a compelling example143, but the 
neural loci have not been found. Neural states can transition abruptly 
between two levels144, but it remains to be shown that the appar-
ent bistability is intrinsic to the network and not a consequence of  
changing feedforward inputs.

Questions and tests for LTM. The link between synaptic change and 
LTM is becoming increasingly well-established. Nevertheless, basic 
questions about the synaptic and circuit-level substrates of LTM 
remain unanswered.

What molecules constitute the LTM maintenance signal in syn-
apses? Identification of the maintenance signal, among the candidates 
discussed above and others, will answer whether the mechanism is an 
intrinsically stable molecular state (with no turnover and thus possible  
problems with aging) or a self-propagating molecular state (with posi-
tive feedback, via either autocatalytic or prion-like properties).

Do individually stable synapses form the substrate of LTM or is LTM 
a circuit-level property with drifting single-synapse contributions? 
Synapses in in vitro brain slices turnover and change in strength145,146 
over tens of days, raising the specter of in vivo turnover. In the latter 
view, memory would consist of some low-dimensional projection of 
the synaptic states, so that many different strength and connectivity 
combinations could result in the same projection, similar in spirit  
to a proposal discussed above for STM141. By moving among these 
synaptic states, individual synapses would fluctuate, but memory 
could remain invariant. For this to be possible, there must be a mecha-
nism continually pushing the network to preserve the same lower 
dimensional memory as synapses vary. Reconsolidation on the basis 
of recall might be such a process147, but if recall is spontaneous, then 
the result is a positive-feedback process that could overwhelmingly 
favor a few strong memories and delete the rest.

To determine whether memory is sustained by the long-term stabil-
ity of its substrates (synapses) or must instead be repeatedly re-instan-
tiated as for RAM in computer systems (see below)44, is important, but 
extremely difficult. A blue-sky experiment would characterize whether 

a

b

Figure 6 Complexity cost of storing a continuous variable in a set of well-
separated discrete attractors. (a) Consider a continuous circular variable 
(such as the orientation of one’s head relative to some external marker; ring 
at left); values of the variable can be naturally and continuously mapped onto 
a (quasi)continuous attractor of the same dimension and topology (shown 
on the right), preserving metric relationships between different values of the 
variable. The encoding is relatively simple, with the selection of a different 
storage state for a different value based on the change in the variable value. 
(b) To encode a continuous variable in a set of well-separated discrete stable 
states in some other coding dimension involves two steps: a discretization 
(first set of arrows) followed by the harder step of choosing how to map the 
discrete values into the attractors. In general, there is no metric-preserving 
mapping and the complexity of this encoding problem is high.
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there is a subspace of synaptic configurations that correspond to a 
stable memory by tracking the synaptic configurations over time while 
also measuring the behavioral retention of the memory. However, 
measuring retention induces recall, which in turn must affect the 
stored memory147. It is probably also impossible to avoid the acquisi-
tion of new memories during this time, which would complicate the 
characterization of invariant subspaces for a given set of memories.

How does new information interact with old in LTM, and does 
LTM operate in a palimpsest mode? Inducing new learning and then 
observing how memory degrades (behaviorally) and neural rep-
resentations change can elucidate how easily neural memories get 
overwritten. For instance, how do hippocampal representations of 
familiar environments change after training the animal on several 
novel environments, as compared with merely waiting as long to 
retest representations in the familiar environment? More ambitiously,  
optical stimulation experiments in vivo142,148 could induce multiple 
new memories using a common set of synapses while measuring how 
old memories disappear.

Biological versus computer memory
Biological and computer memory differ in multiple ways; we high-
light three. First, computer hardware is separate from software, 
and memory from computation. By contrast, structure and activity  
are inextricably intertwined in the brain. Patterns of activity that 
underlie a computation naturally get encoded into LTM via activity-
dependent plasticity. Conversely, these memories alter the computa-
tions a system can perform. Unlike computer memory, which can  
be accessed repeatedly without change, retrieval in the brain can 
reshape the accessed memory147. 

Second, computer memory is accessed by abstract indices generally 
unrelated to memory content, whereas the brain is believed to work 
with content-addressable LTM, in which pieces of the stored item can 
trigger recall of the full memory by completing partial associations. 

Third, computers assign segregated locations to different memo-
ries, whereas memory storage is parallel, distributed and overlapping 
in the brain: a set of synapses is thought to participate in multiple 
memories, and a given memory is distributed across a network. These 
differences can lead to problems with interference and robustness in 
the brain, but putting memory and computation in the same place 
may permit rapid, flexible computation at a lower energy cost and 
without the wait times to access memory that are a severe constraint 
on von Neumann computer architectures.

Nevertheless, biological and artificial memory share some key theo-
retical principles. The STM and LTM distinction may correspond to 
the primary (RAM) versus secondary (hard drive) memory distinc-
tion in computers. Broadly, both STM and RAM require a circuit 
into which information can be repeatedly and rapidly inserted and 
retrieved, and the mechanisms for achieving this involve constant 
expenditure of energy. Computers can continually refresh the decay-
ing states of capacitors, as in dynamic RAM, or use switches stabilized 
by positive feedback between decaying elements, as in static RAM. 
Parallels in biological memory are rehearsal strategies in working 
memory (such as dynamic RAM) and the positive feedback circuits 
believed to maintain persistent activity (such as static RAM). In 
both schemes, to counteract decay, the rate of spiking must exceed 
the inverse biophysical time constant of the neurons or synapses. 
Interestingly, there exist fast RAM-like mechanisms for computer 
memory that do not require power for maintenance, such as flash 
memory. However, the physical device degrades over time.

As with hard drives and RAM, LTM based on synaptic stability 
may require much less energy to maintain than STM (as it does not 

involve neural spiking), is slower to induce, and may exploit more 
sophisticated encoding and decoding schemes to protect against 
errors. Although maintaining a persistent synaptic molecular signal 
might be energetically cheap (or free, if relying on molecular bist-
ability), synapses themselves require energy to maintain, unlike hard 
drive magnetization.

For excellent reviews on more complex memory phenomena than 
the basic question of persistence of information over time that we 
have focused on, including molecular substrates, how to selectively 
activate neurons on the basis of which items must be put into STM, 
the human psychophysics of memory, and differences in hippocampal 
and cortical memory, see refs. 40,149,150.
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