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SUMMARY

We developed a large-scale dynamical model of
the macaque neocortex, which is based on recently
acquired directed- and weighted-connectivity data
from tract-tracing experiments, and which incor-
porates heterogeneity across areas. A hierarchy of
timescales naturally emerges from this system: sen-
sory areas show brief, transient responses to input
(appropriate for sensory processing), whereas asso-
ciation areas integrate inputs over time and exhibit
persistent activity (suitable for decision-making and
working memory). The model displays multiple tem-
poral hierarchies, as evidenced by contrasting re-
sponses to visual versus somatosensory stimulation.
Moreover, slower prefrontal and temporal areas have
a disproportionate impact on global brain dynamics.
These findings establish a circuit mechanism for
‘‘temporal receptive windows’’ that are progressively
enlarged along the cortical hierarchy, suggest an
extension of time integration in decision making
from local to large circuits, and should prompt a re-
evaluation of the analysis of functional connectivity
(measured by fMRI or electroencephalography/mag-
netoencephalography) by taking into account inter-
areal heterogeneity.

INTRODUCTION

The receptive field is a central concept in neuroscience, defined

as the spatial region over which an adequate stimulus solicits

rigorous response of a neuron (Sherrington, 1906). In the primate

visual cortical system, the receptive field size of neurons pro-

gressively enlarges along a hierarchy (Hubel and Wiesel, 1962;

Hubel, 1988; Wallisch and Movshon, 2008). As a result, higher

areas can integrate stimuli over a greater spatial extent, which

is essential for such functions as size-invariance of object recog-

nition in the ventral (‘‘what’’) stream for visual perception (Koba-

take and Tanaka, 1994).

Accumulating evidence suggests that the brain also displays a

hierarchy in the temporal domain. This allows neurons in higher
areas to respond to stimuli spread over a greater temporal extent

and to integrate information over time, while neurons in early

sensory areas rapidly track changing stimuli. In human studies,

preserving the short timescale structure of stimuli while scram-

bling long timescale structure changes responses in associa-

tion areas but not early sensory areas (Hasson et al., 2008;

Lerner et al., 2011; Honey et al., 2012; Gauthier et al., 2012; Ste-

phens et al., 2013). Notably, using electrocorticography (ECoG),

Honey et al. (2012) found that cortical areas sensitive to long time

structure in the stimulus also show slower decays in their tempo-

ral autocorrelation (and hence slower dynamics), and Stephens

et al. (2013) made a similar observation with fMRI. In the ma-

caque, Murray et al. (2014) found a hierarchical organization in

the timescales of spontaneous fluctuations of single neurons

across 7 cortical areas, and an area’s timescale was well pre-

dicted by its position in the anatomical hierarchy of Felleman

and Van Essen (1991). Similarly, temporal correlations in neural

activity reveal slower decay rates in the frontal eye fields than

area V4 (Ogawa and Komatsu, 2010), the timescales of reward

memory lengthen from parietal to dorsolateral prefrontal to ante-

rior cingulate cortex (Bernacchia et al., 2011), and, more gener-

ally, persistent activity after a brief stimulus can last for seconds,

even across inter-trial intervals, in association areas (Amit et al.,

1997; Histed et al., 2009; Curtis and Lee, 2010). Finally, norma-

tive theories of predictive coding suggest that a hierarchy of

timescales would allow animals to form a nested sequence of

predictions about the world (Kiebel et al., 2008).

What underlying neurobiological mechanisms might give rise

to such a range of temporal dynamics? For example, spatial pat-

terns of convergence can produce increasing receptive field

sizes in the visual hierarchy. Are there basic anatomical motifs

that produce a hierarchy of timescales?

Here we report a large-scale circuit mechanism for the gener-

ation of a hierarchy of temporal receptive windows in the primate

cortex. This hierarchy naturally emerges in a dynamical model

based on a recent quantitative anatomical dataset containing

directed and weighted connectivity for the macaque neocortex

(Markov et al., 2011, 2013b, 2014a; Ercsey-Ravasz et al.,

2013). The data were obtained using the same experimental con-

ditions and measures, ensuring a consistent database (Kennedy

et al., 2013), and include both the number of projections between

areas and their laminar origins. Based on a separate anatomical

study (Elston, 2000; Elston et al., 2011), we introduced heteroge-

neity across cortical areas in the form of a gradient of excitatory
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Figure 1. The Network Consists of 29 Widely Distributed Cortical

Areas

(A) Lateral (left) and medial (right) plots of the macaque cortical surface with

areas in color. Plots generated with Caret (Van Essen et al., 2001).

(B) Connection strengths between all 29 areas. The strength of the projection

from area A to area B is measured by the Fraction of Labeled Neurons or FLN

(see the Experimental Procedures and Table S1).

(C) Three-dimensional positions of areas along with strongest connections

between them (FLN > 0.005). Connection strength is indicated by line width.
connection strengths. Strong recurrent excitation has been pro-

posed as a mechanism by which prefrontal cortex could imple-

ment ‘‘cognitive-type’’ computations, such as information inte-

gration and memory-related delay activity; we hypothesized

that differences in recurrent excitationmight allow the generation

of a temporal hierarchy.

Themodel thus incorporatesanatomically constrainedvariation

in both within-area and inter-areal connectivity and enables us to

probe the interplay of local microcircuitry and long-range con-

nectivity that underlies a hierarchy of timescales. Using different
420 Neuron 88, 419–431, October 21, 2015 ª2015 Elsevier Inc.
sensory inputs, we demonstrate the existence, in our model, of

multiple dynamical hierarchies subserved by a single integrated

global and local circuit. We then investigate the implications of

local circuit heterogeneity for macroscopic dynamics measured

by functional connectivity (i.e., correlations in activity across

areas). Here we find a disproportionate role for slow dynamics

in the prefrontal and other association cortices in shaping

resting-state functional connectivity. This role is not predicted

by long-range connections, suggesting that interpretations of

brain imagingdatawill need tobe revised toaccount for inter-areal

heterogeneity.

While we have used the model to investigate the origin of a

hierarchy of timescales, it can be a platform for future models

relating connectivity to dynamics and the functions of cortical

areas. Most statistical analyses of connectivity (Bullmore and

Sporns, 2009; Sporns, 2014) and computational models (Ghosh

et al., 2008; Deco and Corbetta, 2011; Honey et al., 2007, 2009;

Deco et al., 2014) have lacked comprehensive high-resolution

data, relying either on collating qualitative tract-tracing data

across disparate experiments and conditions or on diffusion

tensor imaging, which is noisy and cannot reveal the direction

of a pathway. Moreover, such models typically treat cortical

areas as identical nodes in a network, distinguished by con-

nection patterns but not by local properties or computational

capabilities. Although this approach is reasonable for certain

purposes, it is doubtful that functional specialization of cortical

areas can be elucidated without considering heterogeneity.

Our model provides a framework to explore how dynamical

and functional specialization can emerge from inter-areal path-

ways coupled with local circuit differences.

RESULTS

We developed the model in three steps. First, we used recent

connectivity data for the macaque neocortex (Markov et al.,

2014a), designed to overcome the limitations of collated anatom-

ical datasets, and collected by the same group under similar

conditions, with quantitative measures of connectivity. The con-

nectivity weights are directionally specific and cover 29 widely

distributed cortical areas, with 536 connections whose strengths

span five orders of magnitude (Figure 1). The presence or

absence of all projections in this network has been established;

thus, there are no unknown pathways.

Second, each cortical area was described by a threshold-

linear recurrent network with interacting excitatory and inhibitory

populations and calibrated by the neurophysiology of the pri-

mary visual cortex (Binzegger et al., 2009), but rescaled as

described below. This is a highly simplified description of the

dynamics of an area and ignores most within-area variability. In

particular, note that the model is large-scale in that it addresses

macroscopic cortical dynamics but is not large-scale in the

sense of having millions of neurons or very high-dimensional

activity. However, this level of complexity allows us to parsimo-

niously capture essential requirements for a hierarchy of time-

scales. We extend our results in Figure 7 and suggest further

extensions in the Discussion.

Third, we hypothesized that the local microcircuit is qualita-

tively canonical (Douglas andMartin, 1991), i.e., the same across



Figure 2. Hierarchical Organization of the Cortex

(A) Fraction of neurons in a projection originating from the supragranular layers

of the source area (SLN). Areas are arranged by hierarchical position. Thus,

most feedforward projections (SLN > 0.5) lie below the diagonal and most

feedback projections (SLN < 0.5) lie above the diagonal. Absent projections

are shown in gray.

(B) Hierarchical position of an area is well correlated with the number of spines

on pyramidal neurons in that area (Elston, 2007). For details on area labels in

this image, see the Supplemental Experimental Procedures.
areas, but that quantitative inter-areal differences are crucial

in generating the timescales of areas. Specifically, the number

of basal dendritic spines on layer three pyramidal neurons in-

creases sharply from primary sensory to prefrontal areas (Elston,

2000; Elston et al., 2011). Taking spine count as a proxy for excit-

atory synapses per pyramidal cell, we introduced a gradient

of excitatory input strength across the cortex. We modeled

this by scaling the strength of excitatory projections in an area

according to the area’s position in the anatomical hierarchy

described below.

Gradient of Excitation along the Cortical Hierarchy
The laminar pattern of inter-areal projections can be used to

place cortical areas in a hierarchy: neurons mediating feedfor-

ward connections from one area to another tend to originate in

supragranular layers of the source area, whereas feedback pro-

jections tend to originate in infragranular layers (Felleman and

Van Essen, 1991; Barbas and Rempel-Clower, 1997). This was

quantified by Barone et al. (2000), who observed that the fraction

of projecting neurons located in the supragranular layers of the

source area defines a hierarchical distance between two areas;

this allowed them to reproduce the hierarchy of Felleman and

Van Essen (1991) using data from connections to only two areas

(V1 and V4).

The laminar data includedwith thispaper (see TableS1) contain

hierarchical distance measured this way for all pairs of cortical

areas included in the model (Figure 2A). We follow the approach

ofMarkovet al. (2014b), anduse these toestimateeacharea’spo-

sition in an underlying hierarchy. We found that an area’s position

in this anatomical hierarchy is strongly correlated with counts

of spines on pyramidal neurons in that area (Elston, 2007). This

allowed us to introduce a systematic gradient of excitatory

connection strength per neuron along the cortical hierarchy, and

to explore how such heterogeneity interacts with the pattern of

long-range projections to produce large-scale dynamics.

As a visual and conceptual aid, in Figure 2C we use a two-

dimensional embedding to plot hierarchy and connectivity for

the 29 areas. The angle between two areas reflects connection

strength (closer areas have stronger connections), and the dis-

tance of an area from the center reflects hierarchy (higher areas

closer to the center). The low-dimensional embedding is approx-

imate but captures broad features of cortical organization and

provides intuitive understanding of the model’s behavior. It sug-

gests two hierarchical streams of sensory input originating in

area V1 (primary visual cortex) and area 2 (part of primary so-

matosensory cortex) respectively, and converging on densely

connected association areas. We next explored the response

of the network to these sensory inputs.

Response to Visual Inputs
We simulated the response of the network to a pulsed input to

primary visual cortex (area V1). The response is propagated up
(C) Two-dimensional plot of areas determined by long-range connectivity and

hierarchy. The distance of an area from the edge corresponds to its hierar-

chical position, while the angular distance between two areas is inversely

related to their connection strength. Areas are colored by cortical lobe.

See also Figure S1 and Table S1 for the data.
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Figure 3. The Network Shows a Hierarchy of Timescales in Response to Visual Input

(A) A pulse of input to area V1 is propagated along the hierarchy, displaying increasing decay times as it proceeds. In all images, areas are arranged (and colored)

by position in the anatomical hierarchy.

(B) Traces contrasting the activity of area V1 and dorsolateral prefrontal cortex in response to white-noise input to area V1.

(C) Autocorrelation of area activity in response to white-noise input to V1. The autocorrelation decays with different time constants in different areas, showing a

functional hierarchy ranging from area V1 at the bottom to prefrontal areas at the top.

(D) The dominant time constants in various areas of the network, extracted by fitting exponentials to the autocorrelation (colors as in C). Time constants tend to

increase along the hierarchy but depend on the influence of long-range projections (for example, contrast area 8 m with area TEpd).

See also Figures S2 and S3.
the visual hierarchy, progressively slowing as it proceeds (Fig-

ure 3A). Early visual areas, such as V1 and V4, exhibit fast,

short-lived responses. Prefrontal areas, on the other hand,

exhibit slower responses and longer integration times, with

traces of the stimulus persisting several seconds after stimula-

tion. As with the response to a pulse of input, white-noise input

is integrated with a hierarchy of timescales: the activity of early

sensory areas shows rapid decay of autocorrelation with time

whereas cognitive areas are correlated across longer periods

(Figures 3B and 3C). Thus, a hierarchy of widely disparate tem-

poral windows or timescales emerges from this anatomically

calibrated model system.

To quantitatively compare areas, we fit single or double expo-

nentials to the decay of each area’s autocorrelation function (see

Figure S2 for plots of the fits). These fits capture a dominant

characteristic timescale for each area in our model in response

to visual stimulation. The time constants from the fits are plotted

in Figure 3D, with areas ordered by position in the anatomical hi-

erarchy. As can be seen from the bar plot, the dominant time-

scale of an area tends to increase along the hierarchy (i.e., left

to right), suggesting an important role for a gradient of excitation

in generating the temporal hierarchy.

Nevertheless, an area’s timescales are not entirely determined

by its hierarchical position, and the plotted timescales do not in-
422 Neuron 88, 419–431, October 21, 2015 ª2015 Elsevier Inc.
crease monotonically with hierarchy. To gain some intuition for

the role of long-range projections in the model, consider area

8m (part of the frontal eye fields), which is low in the hierarchy

and would show a rapid decay of correlation in the absence of

long-range projections (far-right image of Figure 5A) but instead

demonstrates long timescales in the model (and in the empirical

observations of Hasson et al., 2008). As can be seen from Fig-

ure 2C, area 8m participates in a strongly-connected core of

prefrontal and association areas (Ercsey-Ravasz et al., 2013;

Markov et al., 2013b), allowing it to show long timescales that

emerge from inter-areal excitatory loops (these timescales are

strongly attenuated in the absence of feedback projections).

The shared slower timescales are particularly characteristic of

prefrontal areas in our model (see Figure S2, especially areas

best fit by two timescales). Conversely, whereas area TEpd is

high in the hierarchy, it does not participate in this core and is

instead strongly coupled to ventral stream visual areas. Thus, it

reflects the faster timescales of visual input.

Multiple Functional Hierarchies
The response to visual input reveals an ascending hierarchy of

timescales in the visual system. We next stimulated primary so-

matosensory cortex (area 2), which is weakly connected to the

visual hierarchy and strongly connected to other somatosensory



Figure 4. The Response to Somatosensory Input Reveals a Different

Functional Hierarchy Subserved by the Same Anatomical Network

(A) Autocorrelation of activity for areas that show strong responses to input to

area 2 (part of primary somatosensory cortex). Area labels are arranged ac-

cording to position in the underlying anatomical hierarchy. Inset: time con-

stants fitted to the autocorrelation function for each area.

(B) Timescales in response to visual (left) and somatosensory input (right)

shown with lateral (top) and medial (bottom) views of the cortex.

See also Figure S4.
and motor areas (Figure 2C). As previously, input propagates up

a hierarchy of timescales (Figure 4A). However, the somatosen-

sory response uncovers a different dynamical hierarchy to visual

stimulation. Primary somatosensory cortex shows the fastest

timescale, followed by primary motor cortex (area F1) and so-

matosensory association cortex (area 5). Parietal and premotor

areas show intermediate timescales and, as with visual stimula-

tion, prefrontal areas show long timescales. Visual areas demon-

stratemuchweaker responses than before and aremostly driven

by top-down projections from association areas. Thus, in the

absence of direct input, they reflect the slower timescales of a

distributed network state. In Figure 4B, we contrast time con-

stants for visual and somatosensory stimulation across areas.

An area’s timescales emerge from a combination of local cir-

cuit properties, the specificity of long-range projections, and

the particular input to the network. Our model allows us to

examine the contribution of each. These can be intuitively sum-

marized by noting that each area in Figure 2C shows timescales
approximately determined by its distance from the periphery (hi-

erarchical position), proximity to the central clusters (long-range

connectivity), and distance from the source of input.

Role of Local and Long-Range Projections
To further dissect the contributions of local and long-range pro-

jections, we examined time constants in response to visual input

after removing either differences in local microcircuitry or inter-

areal projections. In the second image of Figure 5A, we show

that the range of timescales is drastically reduced in the absence

of differences in themicrocircuit across areas. Moreover, there is

no longer a relationship to an area’s position in the anatomical hi-

erarchy. Thus, while differences in long-range inputs and outputs

to each area are significant, they are insufficient to account for

disparate timescales and local heterogeneity is needed.

In the third image of Figure 5A, we show the effect of removing

long-range feedback projections, and for the far right image, we

remove all long-range projections and stimulate individual areas

separately. The range of time constants is lower, reflecting the

propensity of slow areas to form long-range excitatory loops

with each other. More significantly, once long-range projections

are removed, an area’s time constant simply reflects its position

in the hierarchy.

We extend our investigation of the role of long-range projec-

tions by contrasting the resting-state response (i.e., equal

white-noise input to all areas) of the intact network to networks

where long-range connections are scrambled while preserving

the gradient of excitation. A number of these networks show re-

sponses that are poorly fit by exponentials, so wemeasure time-

scale non-parametrically as the time after pulse offset for activity

to decay to within 5% of baseline. In Figure 5B, we show that

scrambling almost entirely removes the hierarchy of timescales,

further confirming that a gradient of excitation alone is insuffi-

cient to separate timescales.

The connectivity data show specificity in which projections

exist and in their strengths, and both connection probability

and strength decay exponentially with inter-areal distance (Mar-

kov et al., 2011, 2013b, 2014a; Ercsey-Ravasz et al., 2013). In

Figure 5C, we preserve network topology (i.e., which areas are

connected), but scramble the strengths of non-zero projections.

Here the separation of timescales is strongly attenuated for most

areas, suggesting that specificity in projection strengths and not

just network topology is required for the timescales we see.

Localized Eigenvectors and Separated Timescales
The model for a single area is threshold-linear, meaning we

ignore nonlinearities besides the constraint that firing rates be

positive. This allowed us to explore the genesis of separated

timescales with linear systems analysis. The activity of a linear

network is the weighted sum of characteristic activity patterns,

called eigenvectors (Rugh, 1995). Each eigenvector evolves on

a timescale given by a corresponding eigenvalue and is differ-

ently driven by different inputs.

The eigenvectors of the linearized network are localized: those

with short timescales are broadly concentrated around sensory

areas and those with long timescales are concentrated at frontal

areas (Figure 6). In general, if an eigenvector is small at a node

then its amplitude at that node in response to input will also be
Neuron 88, 419–431, October 21, 2015 ª2015 Elsevier Inc. 423



Figure 5. Role of Local and Long-Range Projections in Determining Timescales

(A) Time-constants fit to network activity after removing gradient of excitation or long-range projections. Far left: time constants for intact network. Center left:

network with no gradient of excitatory synapses across areas. Center right: network with feedback projections lesioned. Far right: network with all long-range

projections lesioned.

(B) Effect of scrambling long-range connectivity on resting-state network dynamics, measured by the time taken for an area’s activity to return to 5% of baseline

after a 250 ms pulse of input. Distribution of timescales when all connection strengths are randomly permuted. Dark blue, lighter blue and very light blue circles

indicate median value, 10th to 90th percentiles and 5th to 95th percentiles respectively. Intact network shown in black, for comparison. Timescales for scrambled

networks are much more similar to each other (compare black to blue), and fast visual areas show the greatest disruption.

(C) Distributions when only non-zero connection strengths are permuted, thus preserving the connectivity pattern but not strengths.
small, and the corresponding timescale will be weakly ex-

pressed. Thus, localization means that for most inputs network

dynamicswill be dominated by rapid timescales at sensory areas

and slower timescales at cognitive areas. In previous theoretical

work, we have shown how localized eigenvectors can arise in

networks with gradients of local properties and produce a diver-

sity of timescales (Chaudhuri et al., 2014).

Extension to Nonlinear Dynamics and Multistability
The threshold-linear local circuit let us highlight the requirements

for a hierarchy of timescales and provide intuition from linear sys-

tems theory. Moreover, many systems can be linearly approxi-

mated, and neural responses are often near linear over a wide

range of inputs (Wang, 1998; Chance et al., 2002), making linear

and threshold-linear models useful for neural circuits (Dayan and

Abbott, 2001).

Nevertheless, linearmodels show limited dynamics and cannot

capture features such as persistent activity or multistability,
424 Neuron 88, 419–431, October 21, 2015 ª2015 Elsevier Inc.
which are thought to be important for cognitive capabilities in

higher areas (Wang, 2013). We thus replaced our local circuit

with a firing rate (‘‘mean-field’’) version of a spiking network

with more realistic synaptic dynamics (Wang, 2002; Wong and

Wang, 2006). When isolated, an area in this network can display

qualitatively different regimes (Figure 7A). For relatively weak

recurrent connections, an area shows a single stable state. As

recurrent excitation is increased, there is a transition to a regime

with two stable states, with low and high firing rates that corre-

spond to a resting state and a self-sustained persistent activity

state. In this regime, an area can integrate inputs over time and

maintain activity in the absence of a stimulus. Such dynamical re-

gimes have been proposed to underlie ‘‘cognitive-type’’ compu-

tations such as working memory and decision-making (Wang,

2002, 2013).

With this model for each area in the large-scale network, we

introduced the previous gradient of excitation. Consequently,

sensory areas show single stable states while areas further up



Figure 6. Eigenvectors of the Network Coupling Matrix Are Weakly

Localized, Corresponding to Segregated Temporal Modes

Each column shows the amplitude of an eigenvector at the 29 areas, with

corresponding timescale labeled below. The 29 slowest eigenvectors of the

system are shown.
the hierarchy can also show persistent activity when driven by

strong inputs (Figure 7B). Small perturbations are insufficient to

shift the state of a node but take longer to decay away in areas

further up the hierarchy (Figure 7C).

For small inputs, the network response resembles the

threshold-linear model: a brief input to V1 is propagated up the

hierarchy, with rapid decays in sensory areas and slow decays

in association areas (Figure 7D). Thus, the previous results

extend to a nonlinear model with a larger dynamical repertoire.

Exploring the complex dynamical behaviors that this network

can show is beyond the scope of this paper, but one interesting

consequence of the extended model is that the timescales of

small fluctuations around baseline predict the ability of an area

to showmuch longer timescales in response to larger inputs (Fig-

ure 7C and see Discussion), as observed in Honey et al. (2012)

and Murray et al. (2014).

Functional Connectivity
We now investigate the implications of local heterogeneity for

network organization as measured by correlations in resting-

state activity (resting-state functional connectivity). In our model,

frontal and association areas reflect a slowly varying network

state, and we hypothesized that this state should strongly shape

functional connectivity.

In Figure 8A, we show functional connectivity in our threshold-

linear model with heterogeneity in local area properties, or

without it (as typically assumed in models relating functional to

anatomical connectivity). The inclusion of a gradient of local

excitation reduced the correlation (r2) between functional and

anatomical connectivity from 0.83 to 0.53 (Figure S6 shows re-

sults using a BOLD kernel [Boynton et al., 1996]).

Multiple studies find that the strength of an anatomical con-

nection between areas (‘‘structural connectivity’’) partially pre-

dicts correlations in neurophysiological signals from those areas
(functional connectivity), but there are significant differences

(Hagmann et al., 2008; Honey et al., 2009; Damoiseaux andGrei-

cius, 2009; Honey et al., 2010; Deco and Corbetta, 2011; Deco

et al., 2014). Our results also suggest that inter-areal connec-

tions are insufficient to predict functional connectivity. However,

we find that heterogeneity in local connectivity could help ac-

count for the previously unexplained variance.

In our model, slower frontal and temporal areas in particular

show enhanced functional connectivity. Consequently, areas

with slow timescales play a predominant role in the network,

as shown by ‘‘lesioning’’ individual areas (Figure 8B, left panel).

For the simple case of identical input to each area, the effect of

lesioning an area is well predicted by the time constant of

intrinsic fluctuations (Figure 8B, right panel). Note that areas

most important for functional connectivity are not simply those

at the highest positions in the hierarchy (i.e., with the most recur-

rent connections), and hierarchy alone poorly predicts impact on

functional connectivity (r2 = 0.18). For instance, the caudal supe-

rior temporal polysensory region (STPc) and the rostral parabelt

(PBr) are at intermediate hierarchical positions but have strong

connections to other parts of STP (darker lines in Figure 8B)

forming a cluster that shapes functional connectivity. In general,

areas combining intermediate to high hierarchical position and

strong connections to slow areas have the strongest influence

on global activity patterns.

DISCUSSION

The main findings of this work are 3-fold. First, it establishes a

circuit mechanism for a hierarchy of temporal receptive win-

dows, which has received empirical support in recent human

(Hasson et al., 2008; Lerner et al., 2011; Honey et al., 2012;

Gauthier et al., 2012; Stephens et al., 2013) and single-unit mon-

key experiments (Murray et al., 2014). The model extends time

integration in decision making from local circuits (Wang, 2008)

to a large-scale system across multiple timescales (Hasson

et al., 2015). Second, inter-areal heterogeneity implies that areas

cannot be treated as identical nodes of a network and slow dy-

namics in association areas can play a disproportionate role in

determining the pattern of functional connectivity. This suggests

that functional connectivity analyses be revised. Third, this is the

first large-scale dynamical model of the macaque cortex based

on weighted and directed connectivity and incorporating hetero-

geneity across areas.

The ability to integrate and hold information across time is crit-

ical for cognition. On the other hand, the brain must rapidly and

transiently respond to changing stimuli. Complex behavior thus

requires a multitude of coexisting timescales. We demonstrate

how such timescales (or temporal receptive windows) naturally

emerge in a model of primate cortex, built with quantitative

anatomical data. Our work revealsmultiple functional hierarchies

converging on a slow distributed network of densely connected

frontal and other association areas.

A long-standing observation is that strong recurrent connec-

tions can produce slower dynamics (Wang, 2008), and we

show how this basic anatomical motif can interact with the

pattern of long-range connections to produce a hierarchy of

timescales. The hierarchies we observe with different stimuli
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Figure 7. Hierarchy of Timescales in a Nonlinear Model

(A) Possible steady states (bifurcation diagram) for an area as a function of recurrent strength (normalized by value at V1). Stable steady states are shown with

solid lines. Areas with comparatively low recurrent strength display only a single steady state. Increasing the recurrent strengths leads to a regime with a high-

activity steady-state. The dashed line is an unstable intermediate steady state. The thick blue line shows the parameter range supporting bistability, while the light

blue shaded region indicates the range used for areas in the model. Steady states are shown as fractional activation of NMDA conductance.

(B) Response of disconnected areas to a strong pulse of input. As in (A), V1 only shows a single stable state, whereas area 24c shows sustained delay activity.

(C) The timescales of responses to a small perturbation serve as a probe of the recurrent strength of a local area. These timescales are much smaller than those in

response to a larger input but emerge from the same underlying gradient in recurrent strengths.

(D) Response of connected network to a brief pulse of input to area V1. As in Figure 3, the input is propagated up the hierarchy, slowing down as it proceeds. Note

that the input is not strong enough to switch any area into the high-activity stable state.
thus emerge from a combination of heterogeneity in excitatory

connection strengths across areas and the profile of long-range

connectivity (which is highly specific to each area (Markov et al.,

2013a)), and neither alone can predict an area’s timescales.

For example, while differences in local recurrence play a crucial

role in generating timescales, the correlation between anatom-

ical hierarchy and timescale is relatively weak (r2 = 0.25, 0.14,

0.22 in the visual, somatosensory, and resting-state conditions,

respectively). Moreover, areas can show quite different time-

scales in response to different inputs: as seen in Figure 4B,

even early visual areas with relatively weak recurrence can

have slower timescales. To characterize the dependence of

timescales on local and long-range properties, we first removed

the gradient of local properties and observed that the hierarchy

of timescales vanishes. Separately, we preserved the local prop-

erties of areas and either removed (Figure 5A, right panels) or

scrambled the long-range projections both globally and while

preserving network topology (Figures 5B and 5C).
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It will be important to further probe the interaction of local and

long-range connectivity. This will require additional anatomical

and physiological data, and our model can be a platform to

explore the consequences of these data for large-scale dy-

namics. For example, following the finding of Markov et al.

(2011) that the proportion of local to long-range synapses is

roughly conserved across areas, we have chosen to scale both

local and long-range projections by an area’s position in the

hierarchy. Nevertheless, local and long-range synapses may

have different strengths and properties and may differentially

target cell types and dendritic locations. Relatedly, long-range

inputs may be differentially gated depending on task demands

and the local circuit regime. Conversely, in the nonlinear model,

long-range input can shift the dynamical regime of the local cir-

cuit: an area that lacks persistent activity when isolated may

show persistent activity in the presence of a weak long-range

control signal. These interactions can provide the network with

an enhanced computational repertoire.



Figure 8. Functional Connectivity Depends

on Local Microcircuitry

(A) Functional connectivity for two networks with

identical long-range connectivity. The network on

the left has the same properties at each area, while

that on the right has a gradient of local recurrent

strengths. Top panel: correlations in area activity

for uncorrelated background input to each area.

Bottom panel: functional connectivity (correlation)

versus structural connectivity (FLN) for non-zero

projections. The network with a gradient of local

recurrence has enhanced functional connectivity

for slow areas, and a smaller overall correlation

between functional and anatomical connectivity

(showing that long-range connections alone

cannot predict global brain activity patterns).

(B) Effect of lesioning areas, one at a time, on

functional connectivity. Left panel: darker areas

are those with a greater influence on resting-state

functional connectivity. Right panel: the effect of

lesioning an area on functional connectivity is well

correlated with the time constant of spontaneous

fluctuations in that area.

See also Figures S5 and S6.
To examine timescales in the clearest way possible, we

modeled individual areas with a threshold-linear rate model,

where time constants aremathematically well defined. However,

the results hold for a nonlinear local circuit with multiple stable

states. Note that this work did not focus on the latency of neural

responses (Schmolesky et al., 1998; Bullier, 2001), for which a

spiking model is needed. Nevertheless, single neurons in the

monkey cortex display slow responses during stimulus presen-

tation as shown in the model; for example, in decision tasks pre-

frontal and parietal neurons can show quasi-linear ramping with

a time constant that may appear effectively infinite (Smith and

Ratcliff, 2004; Gold and Shadlen, 2007; Wang, 2008; Brunton

et al., 2013). Thus, the model is the simplest that is adequately

designed to reveal a hierarchy of timescales in the cortex.

We systematically introduced heterogeneity into our model by

assigning each cortical area a hierarchical position determined

by its pattern of feedforward and feedback projections. A priori,

there is no reason why excitatory input would vary systematically

along this anatomical hierarchy. However, we find that hierarchi-

cal position correlates very strongly with the number of spines

per neuron in an area (Figure 2B). This suggests an underlying

cortical organizational principle, which could be explored in
Neuron 88, 419–431,
future (see Scholtens et al. (2014) for a

similar observation and Barbas and Re-

mpel-Clower (1997) and Hilgetag et al.

(2002) for correlation of hierarchy with

lamination and relative density of an

area).

There are no systematicmeasurements

of the timescales of areas in response to

different stimuli, but recent studies have

compared temporal responses and inte-

gration timescales across areas and re-

port a hierarchical organization (Hasson

et al., 2008; Ogawa and Komatsu, 2010; Lerner et al., 2011;

Bernacchia et al., 2011; Honey et al., 2012; Gauthier et al., 2012;

Stephens et al., 2013; Murray et al., 2014). Notably, Honey et al.

(2012) connected a functional hierarchy in the timescales of

preferred stimuli to a dynamical hierarchy in the timescales of

correlation in network activity, and found autocorrelation time-

scales similar to those we model (in particular, see Figure 6 of

Honey et al., 2012). Similarly, Murray et al. (2014) found that auto-

correlation traces were well-described by exponentials, the hier-

archical ordering of areas they observe agrees with our model,

and the timescales of small fluctuations in that study are close

to the intrinsic time constants of areas in the model (i.e., in the

absence of long-range projections such as Figure 5A, far right

panel).

Our model has several testable predictions. Though there are

multiple combinations of local time constants and network

connection strengths that could produce a particular set of

observed timescales, the model suggests that timescales of

small fluctuations should reflect the intrinsic properties of areas

(far right panel of Figure 5A), while larger responses should

reflect time constants that emerge from the entire system (far

left panel of Figure 5A). In the model, slow network timescales
October 21, 2015 ª2015 Elsevier Inc. 427



are driven by strongly connected frontal and temporal areas,

corresponding to a slowly varying global state. Inactivating these

areas should decrease slow dynamics in connected areas lower

in the hierarchy. The differential responses to visual and somato-

sensory input suggest that when a particular input is not involved

in a task, the corresponding sensory areas better reflect slow

changes in global cortical state. This may explain decreases in

low-frequency ECoG power (i.e., slow modes) when a subject

engages in a task (He et al., 2010; Honey et al., 2012), as well

as the observation of Stephens et al. (2013) that, despite fast

timescales in response to visual input, early visual areas have

slow timescales during auditory processing. Finally, we predict

that areas with longer timescales, such as prefrontal and supe-

rior temporal areas, can shape functional connectivity to a

greater degree. This highlights the importance of incorporating

heterogeneous local dynamics in studying the determinants of

functional connectivity and, intriguingly, suggests that functional

connectivity might be used to probe local properties. Whereas

there is some evidence that frontal and association areas show

enhanced functional connectivity (Sepulcre et al., 2010) and of

a correlation between enhanced functional connectivity and

slow timescales (Baria et al., 2013), it would be interesting to

use functional imaging to better understand the link between

functional connectivity and response timescales (for example,

as determined by the approach of Hasson et al. [2008], Lerner

et al. [2011], Honey et al. [2012], and Gauthier et al. [2012]).

The link between slow timescales and enhanced functional

connectivity might also explain observations that functional con-

nectivity is greater at low frequencies (Salvador et al., 2005).

Moreover, because distant areas tend to lack strong direct con-

nections, their functional connectivity will be primarily driven by

slow distributed network modes and will be further biased to-

ward low frequencies, as previously observed (Salvador et al.,

2005).

We mostly used a threshold-linear model for local areas, but

the hierarchy of timescales holds when areas are modeled by a

nonlinear microcircuit, similar to one proposed as a model for

general ‘‘cognitive-type’’ computations (Wang, 2002, 2013). De-

pending on connectivity and input parameters, such networks

show a single stable state, multistability with persistent firing,

or continuous slow fluctuations between metastable states.

While we do not explore this broader range of behaviors, note

that in the nonlinear model the timescales of small fluctuations

around baseline predict an area’s ability to show much longer

timescales in response to larger inputs. This can be seen by

comparing the timescales of Figure 7C with the steady states

of Figure 7A, and by contrasting responses to large and small

perturbations in Figures 7B and 7D (note that timescales in

response to large perturbations tend to be slower than those

from small perturbations even if the area is not bistable). This

may explain why the timescales of spontaneous fluctuations in

an area (on the order of hundreds of milliseconds) correlate

with its sensitivity to temporal structure in stimuli across seconds

(Honey et al., 2012) as well as with slow drifts in baseline neural

activity and the timescales of reward memory (Murray et al.,

2014).

Our model is parsimonious, designed to capture a basic

mechanism underlying a hierarchy of timescales, and can be
428 Neuron 88, 419–431, October 21, 2015 ª2015 Elsevier Inc.
extended in several ways. First, the local area model could

be made more complex, and an interesting direction is using

the SLNs to incorporate a laminar structure. Second, in our

model activity propagates along the hierarchy with significant

attenuation. This attenuation can be substantially decreased

by changing model parameters (M. Joglekar and X.-J.W., un-

published data) and may be removed by synchronous firing

(Diesmann et al., 1999) or more sophisticated feedback projec-

tions (Moldakarimov et al., 2015). Third, we only consider cor-

tico-cortical connections. Whereas these form the major input

to a cortical area (Markov et al., 2011), subcortical projections

will play an important role. For example, incorporating thalamo-

cortical projections would allow us to more realistically model

input and may help set network state and gate inter-areal inter-

actions, whereas neuromodulators such as acetylcholine might

modulate the excitability of local populations and enhance in-

formation transmission at other synapses. Fourth, as a first

step, we used two global parameters to scale long-range

connection strengths but emerging data relating long-range

anatomy and physiology should be incorporated. Fifth, exten-

sions should include other inter-areal heterogeneities, such as

in interneuron types and densities (Medalla and Barbas, 2009)

and in neuromodulatory signaling (Hawrylycz et al., 2012). For

example, it would be interesting to model the higher numbers

of dopaminergic projections to prefrontal areas. Finally, while

we have focused on how areas are able to accumulate in-

coming information on different timescales, processing input

requires synthesizing it with previous input. Future work should

explore how different areas in our model integrate information

from more realistic time-varying stimulation such as a movie

or a song and to probe how these responses change when

the correlation structure of the input is disrupted (for example,

by scrambling).

In conclusion, we report a novel, quantitatively calibrated,

dynamical model of the macaque cortex with directed and

weighted connectivity. The identification of a specific circuit

mechanism for a hierarchy of timescales (temporal receptive

windows) represents a key advance toward understanding

specialized processes and functions of different (from early sen-

sory to cognitive-type) cortical areas. Our findings demonstrate

the importance of heterogeneity in local areal properties, as

well as the specific profile of long-range connectivity, in sculpt-

ing the large-scale dynamical organization of the brain.
EXPERIMENTAL PROCEDURES

Anatomical Data

Connectivity data are from an ongoing project to quantitatively measure all

connections between cortical areas in the macaque (Markov et al., 2014a). In-

ter-areal connection strengths are measured by counting projecting neurons

labeled by retrograde tracer injections and normalizing by the total number

of neurons labeled in the injection, yielding a fractional weight or FLN (fraction

of labeled neurons) for each pathway:

FLNB/A =
# neurons projecting to area A from area B

total neurons projecting to area A from all areas
:

So far, 29 areas have been injected and we use the subnetwork consisting of

these areas. The presence or absence of all connections is known bidirection-

ally, and 66% of possible connections exist, with widely varying strengths.



We also use data on the fraction of neurons in each projection that originate

in the upper layers of the source area (SLN, for supragranular layer neurons

[Markov et al., 2014b]) defined as:

SLNB/A =
# supragranular neurons projecting to area A from area B

# neurons projecting to area A from area B
:

Data are in Table S1 and can also be accessed at http://core-nets.org/. Further

details of data collection can be found in Markov et al., 2014a, 2014b. All the

procedures used in the study followed the national and European regulations

concerning animal experiments (EC guidelines 86/609/EC) and were approved

by the authorized national and veterinary agencies.

Hierarchy and Connectivity Embedding

To extract the hierarchy, we follow observations from the visual system that the

fraction of projections originating in the supragranular layers of the source area

(the SLN) measures hierarchical distance between the source and target areas

(Felleman and Van Essen, 1991; Barone et al., 2000; Markov et al., 2014b). We

use a generalized linear model to assign hierarchical values to areas such that

the differences in hierarchical values predict the SLNs (similar to the method in

Markov et al., 2014b).

For Figure 2C, we compute angles qi so that the angular distances between

areas Ai and Aj correspond to dissimilarity measured as �Log(FLN(Ai, Aj)). We

then plot the areas on a polar plot with q(Ai) = qi and RðAiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p
.

See the Supplemental Experimental Procedures and Figure S1 for an

expanded discussion of the hierarchy and the circular embedding.

Model Architecture

Each area consists of an excitatory and an inhibitory population described by
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:

niE is the firing rate of the i-th excitatory population, with intrinsic time con-

stant tE, couplings wEE and wEI from the local excitatory and inhibitory popu-

lation, and external input Iiext;E (both stimulus input and any noise we add to the

system). The inhibitory population has corresponding parameters tI, wIE, wII,

and Iiext;I: The f-I curves are threshold linear, with slope bE and bI. FLNij is the

FLN from area j to area i. mEE and mIE control the strengths of long-range input

to the excitatory and inhibitory populations, and do not vary between connec-

tions: all specificity comes from the FLNs. h scales both local and long-range

excitatory inputs to an area by its position in the hierarchy, hi. We set tE =

20 ms, tI = 10 ms, bE = 0.066 Hz/pA, bI = 0.351 Hz/pA, wEE = 24.3 pA/Hz,

wIE = 12.2 pA/Hz, wEI = 19.7 pA/Hz, wII = 12.5 pA/Hz, mEE = 33.7 pA/Hz,

mIE = 25.3 pA/Hz and h = 0.68. For more details, see the Supplemental Exper-

imental Procedures.

We mostly ignore inter-areal conduction delays; however, see Figure S3 for

a network with conduction delays.

Pulse Input, Autocorrelation, and Fitted Time Constants

For Figures 3, 4, 5, and 8, we choose the background input for each area so

that the excitatory and inhibitory populations have rates of 10 and 35 Hz,

respectively.

In Figure 3A, V1 receives a 250 ms pulse of input that drives its rate to

100 Hz. For the remaining images of this figure and Figure 5A, the stimulus

to V1 is white noise with a mean of 2 Hz and a SD of 0.5 Hz. The other areas

receive a small amount of background input (SD on the order of 10�5), but

are primarily driven by long-range input propagating out from area V1. For Fig-

ure 4, the currents are the same except that area 2 receives the stimulus rather

than V1.

For each area, we extract time constants by fitting both one and two expo-

nentials to the part of the autocorrelation function that decays from 1 to 0.05. If

the sum of squared errors of the single exponential fit is less than eight times

that of the double exponential, then we report that time-constant. Otherwise,
we use the sum of time constants from the double exponential fit, with each

weighted by its amplitude. Fits in response to V1 and area 2 input and for

resting state activity are shown in Figures S2, S4, and S5.

For Figure 4B, we map the time constants logarithmically to a heatmap and

plot them using Caret (Van Essen et al., 2001).

Functional Connectivity

To highlight the effect of intrinsic hierarchy, in Figure 8A we contrast a network

without hierarchy with a network that has a gradient of local excitatory connec-

tions but unlike in the remaining figures, no gradient in the long-range projec-

tion strengths (thus, these networks have the same long-range connection

strengths and differences emerge from local properties). We replace

ð1+ hhiÞ
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XN
j = 1

FLNijn
j
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!
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i
E +mEE
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j =1
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for the excitatory population, and similarly for the inhibitory population. For

Figure 8B, we use the same network as elsewhere, so that all incoming excit-

atory projections are scaled by an area’s hierarchical position.

We calculate functional connectivity as the correlation matrix of area activity

in response to equal white-noise input to all areas. For Figure 8B, we determine

this correlation matrix analytically (see Supplemental Experimental Proce-

dures). The effect of lesioning an area, A, is measured as jjCl,A�Crs,Ajj/jjCrs,Ajj,
where Cl,A is the correlation matrix after lesioning A, Crs,A is the intact correla-

tion matrix without the row and column corresponding to A, and the double

lines indicate the norm. The values are then scaled to lie between 0 and 1.

Nonlinear Network

The nonlinear single area model is a variant of a model proposed in Wong and

Wang (2006) as an approximation to a spiking network with AMPA, GABA and

NMDA synapses (Wang, 2002). Each area is described by:
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:

nE and nI are excitatory and inhibitory firing rates, sN is a gating variable cor-

responding to NMDA synapses (with decay timescale tN) and 4 is a simplified

f-I curve from Abbott and Chance (2005). We set tN = 60 ms, tI = 10 ms, g =

0.641, wEE = 250.2 pA, wEI = 8.110 pA/Hz, wIE = 303.9 pA, and wII =

12.5 pA/Hz.

For Figures 7A–7C, we remove long-range connections and characterize an

isolated area. The bifurcation diagram of Figure 7A shows network steady

states as we vary the hierarchy scaling (i.e., 1+hhi), whereas Figure 7C shows

the slowest timescale of the Jacobian around the low firing state.

For Figure 7B, we set h = 3.4 and give a 100 Hz pulse of input for 250 ms to

the two disconnected areas at opposite ends of the hierarchy (V1 and 24c). For

Figure 7D, we consider a connected network, with long-range projections only

targeting excitatory subpopulations, for simplicity, and set mEE = 125.1 pA. We

give a 200 Hz pulse of input to area V1 for 250 ms.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2015.09.008.

ACKNOWLEDGMENTS

We thank Nikola Markov and John Murray for discussions. This work was

supported by ONR grant N00014-13-1-0297 and NIH grant R01MH062349

(to X.-J.W.) and by CORE-NETS (ANR-11-BSV4-501) and LabEx CORTEX
Neuron 88, 419–431, October 21, 2015 ª2015 Elsevier Inc. 429

http://core-nets.org/
http://dx.doi.org/10.1016/j.neuron.2015.09.008
http://dx.doi.org/10.1016/j.neuron.2015.09.008
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Supplemental Figures
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Figure S1. Related to Figure 2. Hierarchy fitted from pairwise SLN relationships. (A) Left
panel: Hierarchy fitted from logistic regression (and used in main text). The hierarchical
position of an area is normalized to lie between 0 and 1. Right panel: Hierarchy fitted from
beta regression (Cribari-Neto and Zeileis, 2010). (B) SLN values predicted from logistic
regression compared to observed SLNs.
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Figure S2. Related to Figure 3. Timescales in response to white-noise input to V1. Data
shown in grey, single exponential fits in blue and double exponential fits in dark red. For
double exponential fits, τ1 and τ2 are the time-constants of individual exponentials, and τ is
a weighted average of τ1 and τ2, with weights given by the amplitudes of the exponentials.
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Figure S3. Related to Figure 3. Response of a network with inter-areal conduction delays.
(A) Distances (in mm) between the nodes of the network (Ercsey-Ravasz et al., 2013). (B)
Response of the network to a pulse of input to area V1. Conduction delays between nodes
are imposed using the distances in panel A and a conduction velocity of 1.5 m/s (Deco et al.,
2009).
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Figure S4. Related to Figure 4. Timescales from exponential fits of activity in response to
white-noise input to Area 2. Colors as in Figure S2.
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Figure S5. Related to Figure 8. Timescales from exponential fits of resting-state activity
(i.e., equal white-noise input to all areas). Colors as in Figure S2.
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Figure S6. Related to Figure 8. Functional connectivity of simulated BOLD signal. (A) As
in Figure 8A, the network on the left has the same local properties at each node, while the
network on the right has a gradient of local recurrent strengths. Firing rate is convolved with
a gamma function to generate a simulated BOLD signal (Boynton et al., 1996). Top panel:
functional connectivity in response to background white noise input to each node. Bottom
panel: functional connectivity (correlations in BOLD) vs. structural connectivity (FLN) for
non-zero projections. (B) Effect of lesioning areas on functional connectivity measured via
simulated BOLD signal. Plots are as in Figure 8B.



Supplemental Experimental Procedures

Several of these sections are expanded versions of the corresponding sections in Experimental
Procedures in the main text. To make these descriptions self-contained, the relevant portions
from the main text are repeated here.

Anatomical data

The connectivity data are from an on-going project to quantitatively measure all connections
between cortical areas in the macaque cortex, with areas defined according to a 91 area
parcellation scheme (Markov et al., 2014a). Descriptions of data collection can be found
in Markov et al. (2011; 2014a). Briefly, connection strengths between areas are measured
by counting the number of neurons labeled by retrograde tracer injections. The number of
neurons labeled in a projection ranges from a few neurons to on the order of 100,000 neurons.
To control for injection size, these counts are then normalized by the total number of neurons
labeled in the injection, yielding a fractional weight or FLN (Fraction of Labeled Neurons)
for each pathway, defined as

FLNB→A =
# neurons projecting to area A from area B

total neurons projecting to area A from all areas

The corresponding weights span 5 orders of magnitude. So far, 29 areas have been injected
and we use the subnetwork consisting of these areas. In this network the presence or absence
of all connections is known bidirectionally, and 66% of possible connections exist in the
network, though with widely varying strengths.

We also use data on the fraction of neurons in each projection that originate in the upper
layers of the source area, which we call the SLN, for Supragranular Layer Neurons (Markov
et al., 2014b). These are defined as

SLNB→A =
# supragranular neurons projecting to area A from area B

# neurons projecting to area A from area B
.

The data are included in Table S1, and all data can be downloaded from www.core-nets.org.

Hierarchy and low-dimensional connectivity embedding

In the visual system, projections directed from early visual areas to higher-order areas (i.e.
increasing size of receptive field, position-invariance, and so on) tend to originate in the
supragranular layers of the cortex and terminate in layer 4 (Felleman and Van Essen, 1991;
Barone et al., 2000). Conversely, projections from higher-order areas to early visual areas



originate in the infragranular layers and terminate outside of layer 4. This observation was
systematized by Felleman and Van Essen (1991), who used these anatomical constraints to
place cortical areas in a hierarchical ordering.

Felleman and Van Essen used a discrete classification of projections: in their framework
projections are either feedforward, feedback or lateral depending on where the majority of
projections originate and terminate. However, such binary relations are typically insufficient
to specify a unique hierarchy (Hilgetag et al., 1996). Subsequently, it was observed that rather
than classifying a projection as feedforward, feedback or lateral, the fraction of neurons in a
projection originating in the supragranular layers (the SLN) could be used as a continuous
measure of hierarchical displacement: the difference of the SLN from 50% is positive for
feedforward projections and negative for feedback projections, and its magnitude gets larger
as a projection moves further away from lateral (Barone et al., 2000). For example, a
projection with an SLN of 90% would be very strongly feedforward, while a projection with
an SLN of 65% would be only moderately feedforward. Using these values, the Felleman
and van Essen hierarchy could be reproduced using observations of connections to only two
areas (V1 and V4) (Barone et al., 2000).

To construct the hierarchy we follow a similar framework to Markov et al. (2014b) and use a
generalized linear model. We assign hierarchical values to each area such that the difference
in values predicts the SLN of a projection. Specifically, we assign a value Hi to each area Ai
such that

SLNAj→Ai
≈ g−1(Hi −Hj). (1)

We choose g−1 to be a logistic function (logistic regression), which is standard for probabilities
and fractional values, but we note that other functions yield similar values (Figure S1A). We
have one such constraint for each projection (536 in total), and we find the set of hierarchical
values that best fit these constraints. In the fit we weight the contribution of each projection
by the log of its FLN to preferentially match stronger and less noisy projections. The
resulting best fit hierarchy is shown in the left panel of Figure S1A. We then normalize by
the maximum hierarchical value yielding hi = Hi/Hmax.

We extract the spine counts in Figure 2B from Elston (2007) and plot the areas in common
with our data set. The parcellation in that paper is coarser than the parcellation we use,
so we report the results in terms of that parcellation. For area 7 we average together the
hierarchical positions of 7A, 7B and 7m; for 6 we average F2, F5 and F7; and for 46 we
average together 46d, 9/46d and 9/46v.

For the two-dimensional circular embedding of Figure 2C, we convert the FLN to a measure
of dissimilarity according to

d(Ai, Aj) =

{
− log(FLN(Ai, Aj)) for FLN(Ai, Aj) > 0

− log(FLNmin) for FLN(Ai, Aj) = 0.
(2)

Here, Ai is the ith area, and FLNmin is some value less than the smallest FLN in the network.



We use FLNmin = 10−7 but the results are robust to the precise choice of this value. We then
assign angles θi to each area such that d(Ai, Aj) ≈ Rmin(|θi − θj|, 2π − |θi − θj|), where R
is a single free parameter. We fix area V1 to have θ = 0, but choosing any other area to fix
would simply rotate the plot. Finally, we plot the areas on a 2-dimensional polar plot with
θ(Ai) = θi and R(Ai) =

√
1− hi.

Model architecture

Each of the 29 nodes consists of an excitatory and an inhibitory population, which summarize
the effective dynamics of the area. Populations are described by

τE
d

dt
νE = −νE + βE [IE]+

τI
d

dt
νI = −νI + βI [II ]+ . (3)

νE is the firing rate of the excitatory population, with intrinsic time constant τE and input
current IE, and for which the f-I curve has slope βE. [IE]+ = max(IE, 0). The inhibitory
population has corresponding parameters τI , II and βI . Values for τE, τI , βE and βI are
given below and are taken from Binzegger et al. (2009).

At each node, the input currents have a component from within the area (i.e. local input)
and another that comes from other areas:

I iE = (1 + ηhi)
(
wEEν

i
E + I ilr,E

)
− wEIνiI + I iext,E

I iI = (1 + ηhi)
(
wIEν

i
E + I ilr,I

)
− wIIνiI + I iext,I . (4)

wEE and wEI are couplings to the excitatory population from the local excitatory and in-
hibitory population respectively, I ilr,E is the long-range input to the excitatory population,
and I iext,E is external input (both stimulus input and any noise we add to the system). wIE,
wII , I

i
lr,I and I iext,I are corresponding parameters for the inhibitory population.

Following Binzegger et al. (2009), we write wij = αjSij, where i and j can be E or I. αE
(αI) measures charge introduced per excitatory (inhibitory) spike times transmitter release
probability; both are slightly modified from Binzegger et al. (2009). Sij is the number of
synapses from cells of type j to cells of type i, taken from the counts for layer 2/3 cells in
Binzegger et al. (2004). Inhibitory values are weighted averages of basket, double bouquet
and chandelier cells, with weights chosen according to their projections to the excitatory
population.

We scale the excitatory inputs to an area, both local and long-range, by its position in the
hierarchy, hi. hi is normalized between 0 and 1, and η is a scaling parameter that controls
the effect of hierarchy. By setting η = 0 we remove intrinsic differences between areas. Note



that we scale both local and long-range projections with hierarchy, rather than just local
projections, in accordance with the observations of Markov et al. (2011), who find that the
proportion of local to long-range connections is approximately conserved across areas.

Long-range input is modeled as excitatory current to both excitatory and inhibitory cells:

I ilr,E = µEE

N∑
j=1

FLNijν
j
E

I ilr,I = µIE

N∑
j=1

FLNijν
j
E. (5)

Here j ranges over all areas. I ilr,E and I ilr,I are the inputs to the excitatory and inhibitory

populations, νjE is the firing rate of the excitatory population in area j and FLNij is the
FLN from area j to area i. µEE and µIE are scaling parameters that control the strengths
of long-range input to the excitatory and inhibitory populations, respectively, and do not
vary between connections; all the specificity comes from the FLNs. Long-range connectivity
is thus determined by three parameters: µEE and µIE control the connection strengths of
long-range projections, and η maps the hierarchy into excitatory connection strengths.

We can choose the excitatory to inhibitory ratio of an input current, γ = Iinp,E/Iinp,I , such
that the steady-state firing rate of the excitatory population does not change when the
current is present. Given input of Iinp,E to the excitatory population, an input of γIinp,E
to the inhibitory population increases the inhibitory firing rate sufficiently to cancel out the
additional input to the excitatory population. We call such inputs balanced. We choose µEE
and µIE with a ratio slightly above this value so that projections are weakly excitatory.

Parameters are τE=20 ms, τI=10 ms, βE=0.066 Hz/pA, βI=0.351 Hz/pA, wEE = 24.3
pA/Hz, wIE = 12.2 pA/Hz, wEI = 19.7 pA/Hz, wII = 12.5 pA/Hz, µEE = 33.7 pA/Hz,
µIE = 25.3 pA/Hz and η = 0.68.

Network with conduction delays

In our simulations we ignore conduction delays between areas. While these will be important
for oscillations, synchronization and other fine temporal structure, the timescales we consider
are typically slow enough that conduction delays do not play an important role.

In Figure S3 we demonstrate that our results hold in a network with realistic conduction
delays. We use distances from the same data set as the connectivity strengths (Ercsey-Ravasz
et al., 2013) and, to ensure a fair comparison, assume a relatively low conduction velocity of



1.5 m/s (Deco et al., 2009). As shown in Figure S3B, the response of this network to a pulse
of input to area V1 is almost identical to that of a network without conduction delays.

Scrambled connectivity

For the simulations shown in Figure 5B, we scramble the connectivity matrix by permuting
all entries of the matrix randomly. For Figure 5C, we preserve the absent entries and permute
the non-zero entries. Note that the connectivity data show specificity both in terms of which
projections exist and in their strengths, and both the probability of a connection and its
strength decay exponentially with distance between areas (Markov et al., 2011; 2013; 2014a;
Ercsey-Ravasz et al., 2013). In particular, nearby areas tend to be strongly connected and
to have similar timescales (see Fig. 2C); thus scrambling projections should reduce the
separation of timescales.

We examine the response of these scrambled networks to a pulse of input to all areas,
similar to the “resting-state” condition. In the intact network, areas are dominated by a
few timescales and are well fit by one or two summed exponentials. However, a number of
the scrambled networks show responses that consist of many mixed timescales and are not
well described by two exponentials. Thus we use a non-parametric measure of timescale:
we compute the time taken after pulse offset for the area’s activity to decay to within 5%
of its value at baseline. Scrambling the connection strengths makes about 20% of networks
unstable, meaning that responses to input grow instead of decaying, and we exclude these
networks. We then compute the median and the 5th, 10th, 90th and 95th percentile of the
decay time distribution for each area, and contrast it with values for the intact network.

Functional connectivity for a linear network

If a linear network is driven by white noise input then, away from the threshold, it evolves
according to the equation

ẋ(t) = Ax(t) + I +Bξ(t), (6)

where I is the mean of the noise, B is its covariance matrix and A is the coupling matrix,
which includes any intrinsic leak of activity.

In the steady-state the covariance, C, of this matrix is the solution to the equation (Gardiner,
1985)

AC + CA† +BB† = 0 (7)

This equation can be solved given the eigenvector basis (Deco et al., 2013). In the eigenvector
decomposition, A = V ΛV −1, where Λ is the diagonal matrix of eigenvalues and the columns



of V are the right eigenvectors of A. Define

Q̃ = V −1BB†V −† (8)

Mij = − Q̃ij

(λi + λ∗j)

Then C = VMV †.

As an aid to intuition, assume that A is a normal matrix so that V −1 = V †. Then Q̃ =
V †BB†V , and the covariance matrix of the network is a rescaled version of the covariance
structure of the input noise.

If, as in the simulations of Figure 8, the input noise is independent and identical at each node,
then the covariance matrix of the noise is diagonal with constant entries (and all correlations
come from the structure of the network). If this has the value σ2 at each node then, for a
normal matrix, Q̃ij = σ2δij, and M is diagonal with ith entry τiσ

2/2, where τi = −1/λi.
Hence the covariance of the ith eigenmode is proportional to its corresponding timescale.

Now C = VMV †, meaning that the matrix is rotated out of the eigenvector basis giving a
non-diagonal matrix. Thus eigenvectors that are more broadly shared contribute more to
the functional connectivity. In this case C ∝ A−1/2.

We also note that Baria et al. (2013) conduct a similar analysis on a linear network with
nodes having identical properties and binary connectivity, and find that nodes with more
anatomical connections and, consequently, higher functional connectivity show greater ac-
tivity at low frequencies (i.e., slower timescales).

Functional connectivity with hemodynamic response function

For Figure S6, we convolve the firing rates of the excitatory population at each node with a
hemodynamic response function of the form

H(t) =
(t− d)e−(t−d)/τh

τ 2h
,

with timescale τh = 1.25 s and delay d = 2.25 s (Boynton et al., 1996). This yields a simulated
BOLD signal, and we calculate the functional connectivity as the correlation matrix of this
activity.



Nonlinear network

The single area model is a variant of the model developed in Wong and Wang (2006) as a
simplified mean-field version of the spiking network of Wang (2002). There the dynamics
were assumed to be dominated by the slow time-constant of NMDA synapses, and the
activity of the inhibitory population was incorporated into the effective connection strengths
between the excitatory populations. As in that study, we assume that the dynamics of
the excitatory population are modeled by a dimensionless gating variable, sN , reflecting the
fractional activation of the NMDA conductance, with timescale set by the slow NMDA time-
constant. However, we also consider an inhibitory population, modeled with a threshold-
linear differential equation (as in the previous sections).

The equation for the excitatory population is

νiE = φ
(
I iE
)

= φ
(
(1 + ηhi)

(
wEEs

i
N + I ilr,E

)
− wEIνiI + I iext,E

)
τN

d

dt
siN = −siN + γτN(1− siN)νiE (9)

Here νE is the excitatory firing rate and sN is the NMDA gating variable, which is bounded
between 0 and 1. φ models the firing rate-current dependence of a leaky integrate-and-fire
neuron (Abbott and Chance, 2005) and is defined as

φ(Isyn) =
aIsyn − b

1− exp(−d(aIsyn − b))

with a = 0.27 Hz/pA, b = 108 Hz and d = 0.154 s.

The inhibitory population is described with a threshold-linear equation as before.

τI
d

dt
νiI = −νiI + βI

[
I iI
]
+

= −νiI + βI
[
(1 + ηhi)

(
wIEs

i
N + I ilr,I

)
− wIIνiI + I iext,I

]
+
.

Parameter values are: τN = 60 ms, τI = 10 ms, γ = 0.641, wEE = 250.2 pA, wEI = 8.110
pA/Hz, wIE = 303.9 pA and wII = 12.5 pA/Hz.
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